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Abstract text-driven audio-visual talking head, audio-visual speech-
to-speech translation, and speech-to-video conversion for

Improving the accuracy of speech recognition technology by ad- the hearing impaired.
dition of visual information is the key approach to multi-modal In our earlier research [1,71, we have implemented
ASR research. In this work, we address two important issues, both late integration and early (multi-stream state syn-
which are lip tracking and the visual speech feature extraction chronous) integration schemes for a controlled audio-visual
algorithm. In order to utilize the multi-modal ASR for natural data set. For both integration schemes, the experimental re-
speech, the visual front end algorithm must extract affine and suits showed that addition of visual information improves
lighting condition invariant visual speech features. the recognition performance. In this paper, the following

This paper focuses on both the lip tracking algorithm using objectives will be sought:
the Bayesian framework and a novel pixel based visual speech
feature extraction algorithm based on kurtosis measures of the 1. Development of a lip tracking algorithm, and
frequency profile of the local image blocks. We compare the 2. A novel visual speech feature extraction algorithm
results of the proposedfeatures with the results of outer lip con- that satisfies the following three criteria:
tour based affine-invariant visual features, and global 2D DCT
features. Experimental results in this paper are presented for i. Affine (rotation, scale, and shear) invariance,
a visual-only connected digit recognition task for performance ii. Chrominance space shift invariance, and
comparison of the visual features.

Keywords: Lip tracking, Visual feature extraction, Kur- iii. Chrominance space scale invariance.
tosis measure.

In our proposed visual speech feature extraction method,
1. Introduction the criteria in step (i) is satisfied by affine correction, the

criteria in step (ii) is satisfied by removing of the DC com-
The addition of visual information to audio features im- ponent of the 2D DCT coefficients, and the criteria in step
proves speech understanding and offers key advantages in (iii) is satisfied by the normalized higher order moments of
human-computer interfaces especially in difficult environ- the DCT coefficients of the lip image blocks.
ments [1-61. Improving the existing state-of-the-art auto- This work is organized as follows. In section 2, we
matic speech recognition (ASR) performance by integrat- present a Bayesian framework for lip tracking, parametric
ing the visual information of the speaker's mouth region is formulation of the Gaussian parameters and adaptation of
receiving significant attention from the speech recognition the parameters on the fly. Section 3 discusses the removal of
communities. affine (rotation, scale, shear) effects from the segmented lip

Some of the initial difficulties difficulty associated with image. In section 4, we discuss contour based affine invari-
computer lipreading (visual speech recognition) are the ac- nat features, pixel based normalized 2D DCT features, and
curate and consistent visual region of interest (ROI) extrac- describe a novel visual speech feature extraction algorithm
tion, and lip tracking algorithm on the fly, which needs to based on kurtosis measures of the frequency profile of the
be robust to a speaker's ethnic and gender variability, and local image blocks of the mouth. We present the experimen-
other visual appearances such as glasses, facial hair, various tal setup and the results in Section 5. Section 6 gives the
skin color, lip color, and different lip shapes. Another dif- concluding remarks and the proposed future work.
ficulty difficulty is the robust and consistent visual speech
feature extraction. 2. Lip Tracking Using the Bayesian

The development of a successful audio-visual speech Framework
recognition technology capable of adapting itself to chang-
ing environments will support both industrial and military The basis of the audio-visual speech recognition system is
applications. Audio-visual speech recognition research is a an efficient lip tracking algorithm. Computational time
relatively new and advancing research area. A noise robust constraints required by applications such as audio-visual
audio-visual speech recognition system will facilitate use speech recognition, animated talking head design, etc., con-
of computers, increase reliability and worker productivity, tribute to the difficulty of the task. Most lip tracking algo-
and naturalize communications between human and com- rithms build upon the eigenspace based face detector and
puters. In addition, audio-visual speech recognition tech- an ensemble of feature detectors which are used to extract
nology can facilitate new commercial applications such as pre-specified landmarks such as nostrils and lip corners to
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locate the ROI (mouth region) 18,9]. The deformable tern- 2.1.1. Class Conditional Mixture Density Estimation
plate and snake based methods [10,111 have also been used Given the data sets for lip and non-lip classes from the previ-
for this task. All techniques have reported good results, oiven te dat for l n -clas s fromithe peni-
but accuracy has decreased when there are occlusion (pro- ous frame, we can form the class conditonal mixture density
file view), lighting condition change, texture changes, and function in general as follows.
quick motion. The technique we propose uses color images 1. Form a 6-dimensional attribute data set for each class
with Bayesian framework for classification which requires from color and texture measures (R, G, B, R,, Gý,
the estimation of the a priori probabilities and class condi- B,) for each pixel location, and cluster it (possibly
tional density models. The class conditional density and a into three clusters for lip, tongue, and teeth) using an
priori probability estimation processes are described in the unsupervised K-means clustering algorithm.
following sections. 2. Form the parametric class conditional density models

In the lip tracking problem there are two distinct P(x I WM)) using the method described in Section 2.1
classes, lip and non-lip. Therefore, in this section, the two for each cluster, where i represents the cluster i.d.
class classification problem is discussed because each sam-
ple in the image frame either belongs to lip class, w, or non- 3. Similarly, repeat step 2-6 to form the parametric class
lip class, w2. The conditional density functions and the apri- conditional density models P(x IWW for non-lips

ori probabilities are estimated using the training data that (nL).

may require extensive search to locate the lip and non-lip 4. Form the conditional density mixture models using
regions in the first frame in practice which will not be dis- weighted sum of the conditional densities belonging
cussed here. The Bayes decision rule determines whether to clusters. That is,
an observation, x, belongs to w, or W2. One of the most
commonly utilized probability density functions in practice P(x I wi) = •cP(x Iw"()), i = L, nL (5)
is (he Gaussian density function due to its computational
simplicity and because it models a large number of cases in m=I
nature. The Gaussian parameters are estimated parametri- where C is the number of cluster for the lip or non-
cally using the information from the previous frame on the lip class, and cm = nm/N is the mixture weight ob-
fly which leads to an adaptive real time lip tracking and seg- tained by taking the ratio of the number of pixels in
mentation algorithm. cluster m to total number of pixels in that class.

2.1. Parametric Formulation of Gaussian Density from 2.1.2. A Priori Probability Estimnation
Sample Data As shown in Equation 10, a priori probability specification is
In the parametric formulation of the multivariate Gaussian an important task for a Bayesian classifier since the thresh-
density, estimation of the mean vector and covariance ma- old value of the likelihood ratio is based on the a priori class
trices of the two classes, w, and w2, are required. Let N be probabilities. Basically, it is desired to obtain a speaker and
the number of samples drawn from a class, wi, with respect time (frame) dependent Bayesian parameter set to adapt the
to x in the n-dimensional feature space. Then the general skin tone color variations and lighting variations on the fly.
multivariate Gaussian (normal) density given by The selection of the sample data for obtaining class mean

vectors and covariance matrixes has direct effect on the

I Iparametric representation of the class conditional density
p(xMw•) ( exp{--(x - pi)T1 i-l(x - pi)}, (I) models. Calculating the a priori class probabilities based

727) - IIýJ 1 2 on the number of pixels in each class data is biased to the

i = W1, W2. sample data so it would be a poor choice. By careful ex-
amination of the multi-variate Gaussian density function in

wherei --= E[x] is the mean value of the class wi, and EY is Equation 1, one intuitional choice of the apriori class proba-
the n x n covariance matrices defined as bilities would be biasing them to determinant of the covari-

ance matrixes of the classes, as
i: E[(x - pi)(x -i) (2) p Iil

IlIll represents the determinant of Ei and E[.] is the ex- Iu 1 II + II2I11 = (6)

pected value of a random variable. The parameters pi and
Ei can be estimated without bias by the sample mean and where p(wi) + p(w2) = 1. Figure I shows the class regions

sample covariance matrix as based on the threshold value of the likelihood ratio (Bayes
decision rule) and the effect of a priori class probability se-
lection.

'N
N=-I X(i) i = Wi, W2 (3) 2.2. Bayesian Decision Rule

j=1 Let x be an observation vector (a set of features belong to
a pixel location in the image frame). Our goal is to design

N a Bayes classifier to determine whether x belongs to w, or
- 11 -(x) - x - i)T' w, W2 (4) W2. The Bayes test using a posteriori probabilities may be

N -I =1X _ t X _ iT W1W2() written as follows:
W2

where -() is the jth sample vector from the ith class. p(wl I x) 5 p(wl I x), (7)
3 WI
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, Obtain q, (x) and q2(x) using Equation 11 for every
' P(2) P(xýI2. pixel in the image.

/"o * Use an averaging filter on the q, (x) and q2 (x) to ob-
I-ro ftain {S 1 (x)} and {S2 (x)}. The smoothing operation

s-gion - . ..- reduces the noise effect.

Apply the Bayesian classification rule to every pixel in
the image frame to obtain binary lip candidate pixels,

Figure 1: Bayes decision rule and the effect of the a priori class as

probability values. $i(x) S2 (x). (14)

Wtt1

where p(w, I x) is a posteriori probability of wi given x. . Segment the lip region (using the heuristics such as
Equation 7 shows that, if the probability of w, given x is largest region between nostrils and chin) in the bi-
larger than the probability of w2, then x is declared be- nary image resulted from the Bayes classifier.
longing to wl, and vice versa. Since direct calculation of The Bayesian classifier is applied to the full image array
p(wi I x) is not practical, we can re-write the a poste- for the first frame. But once the lip region is detected on
riori probability of wi using the Bayes theorem in terms the current frame, the next frame's search space is bounded
of a priori probability and the conditional density function by a rectangular ROI, obtained by enlarging the current lip
p(x I wi), as region by 25% of width and height in vertical and horizon-

Xx I WO)p(w) tal directions, respectively. Thus, the Bayesian classifier is
p(wi I x) - x) (8) applied to the ROI on the next frame to enable the real time

p(x) lip tracking instead of the full image array search.

where p(x is the mixture density function, and is positive Adapting classifier parameters on the fly makes algo-
and constant for all classes. Then, the decision rule shown rithm more robust to lighting changes between frames. Also
in Equation 7 can be written as the initial color information extracted from the first image

frame may have several problems with changing conditions.
p(x I wl )p(w,) • p(x I w2)p(w2) (9) Firstly, the color features obtained for a person by a camera

W1 is influenced by the ambient lighting conditions and orienta-
or re-arranging both sides, we get tion of the speaker's face during speech. Secondly, different

cameras produce significantly different color features even

L(x) = p(x T wi) W2 p(w2) (10) for the same person under same lighting conditions. Our
p(x w2) > (10))work aims to overcome this difficulty by adapting the clas-sifier parameters on the fly using the information from the

where L(x) is called the likelihood ratio, and p(w2)/p(wl) is previous frame. The procedure is described as
called the threshold value of the likelihood ratio for the deci- - Extract the color features for lip class.
sion. As shown in Equation 10 a priori probability specifica-
tion is an important task for a Bayesian classifier. Because * Extract the color features for non-lip class.
of the exponential form of the involved densities in Equa- * Update the classifier parameters using the data ab-
tion 10, it is preferable to work with the monotonic func- tained from above two steps.
tions called discriminant functions following discriminant
functions obtained by taking the logarithm of both sides of 3. Removing Affine Parameters from Lip
the Equation shown in 9. image

qi (x) = ln(p(x Iwi)p(wj)), or () In the audio-visual speech and speaker recognition task,

both contour based and pixel based visual features need to

be independent from the affine (rotation, scale, shear and
qi(x) (x - p- A) + 1np(wj) + (12) translation) parameters. In order to utilize the audio-visual

- speech and speaker recognizer for natural speech, the lip
where ci -(1/2) In 21r - (1/2)IIEJIXI is a constant. In gen- image for every frame needs to be pre-processed for remov-
eral Equation 12 has a nonlinear quadratic form and using ing the affine parameters before the visual feature extrac-
Equation 12, the Bayes rule is as follows, which is preferable tion process described in the following sections is applied.
for the efficiency of calculation speed. Then, a question can be posed whether if affine (rotation,

scale, shear and tranlation) parameters convey linguistic in-

q1 (x) ! q2 (X) (13) formation to utilize for the recognition task.
Wo1

3.1. Lip-Rotation Problem
2.3. Lip Tracking Algorithm and ROI Selection Lip-rotation correction on the fly for natural speaker move-

The Bayesian framework descibed in this paper utilizes ment is essential for robust audio-visual speech and speaker
color images with no prior labeling. The goal is to segment recognition. Utilizing lip corners or some other facial fea-
the lip region in the current frame and select the ROI for tures such as nostrils and eye corners may be problematic
the following frame to limit the search space. The basic lip for rotation correction due to the complexity of locating
tracking and ROI selection procedures are described below, such facial features accurately during natural speech [9,12].
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Figure 2: Lip rotation correction: a) rotation correction using Figure 3: An example of the scaling problem due to speaker's

the PCA, b) outer lip contour after rotation correction, c) gray distance to camera or speaker's lip physical dimensions.

lip image after ration correction and scaling to 96x64 pixels.
Y

We propose a principal component analysis (PCA) based
rotation estimation and correction method to overcome the
difficulties mentioned above. Jump

3.1.1. Rotation Correction Using PCA

Principal component analysis (PCA) is a method for analyz-
ing multivariate data to identify a set of new orthogonal axes
known as principal components. The first principal compo-
nent is the axis that describes most variance of the data, the
second principal component is the orthogonal axis that de- Figure 4: An illustration of the shearing in the horizontal direc-
scribes the second most variance of the data, and so on. PCA tion.
is also called the Hotelling transform or Karhunen-Lo6ve
expansion [131.

Let x = [XIX 2]T be a 2-dimensional random variable The rotation corrected lip image is obtained by multiplying
with mean m. and covariance matrix C based on N sam- R- 1 with the coordinates of lip pixel locations, as
pies of a lip image pixel locations. The mathematical repre-
sentation of PCA as follows. [x'I]=R- [x-] n] =12 N (22)

1 N I[Y' :Y n= ' ' '' N( 2

1 ± -Xki, k = 1,2 so (15)
N where (X,, /n)T represents the cartesian coordinates of the

lip pixel locations, and (xl, yn) represents the cartesian

Mr. = [mxl mx2]r and (16) coordinate of the lip pixel locations after the rotation correc-
tion. Figure 2c shows the orientation of the lip shape after
rotation correction and scaling of lip shown in Figure 2a.

N

C= N 1 -(Xi _ mx)(Xi _ m')T, (17) 3.2. Scaling Problem

where T represents the transpose operation. The task is to The scaling problem occurs due to the speaker's distance to

find the new set of orthogonal axes and estimate the rotation camera, the camera zoom factor and the speaker's actual lip

angle with the standard coordinate system, and then undo dimensions. In this case, any pixel based visual feature ex-

the rotation of the lip pixel coordinate data. Figure 2 shows traction method such as DCT or wavelet transform method

the rotation correction using the PCA coordinate rotation. which utilizes the frequency content of the lip image may

In order to estimate the rotation angle a between x-axis generate inconsistent (noisy) observation vectors. To over-

and u-axis shown in Figure 2a, we solve for the eigenvalues come this problem, we propose to interpolate every lip im-
JAI, A2 } of the covariance matrix C and find the eigenvector age to same size, N x M. Figure 3 shows the scaling prob-

ei corresponding to the largest eigenvalue. The process is as lem example for two different speakers and the lip images

follows: of them after interpolation (scale correction).

IC - Ail = 0, (18) 3.3. Shearing (Uneven Scaling) Problem

and then find the eigenvectors (also called proper vector or Shearing occurs when the speaker's head position is not per-
characteristic vector), calculated as pendicular to camera optical axis. For example, one side of

the lips which may look larger than the other. Solving the
Cei = Ai e, i = 1, 2 (19) shearing problem using the single 2D image information is

where el = [e., lIT. The eigenvector belongs to largest not theorotically possible. There can be various practical
eigenvalue defis approaches to minimize the shearing effect such as usingeievledefines the rotation angle a, as

the symmetry information of the lips may enable us to esti-
a = atan(e1 i/e~i). (20) mate the shear matrix by utilizing the least squares estimate

method and undo the shearing. Figure 4 illustrates a typical
Then the rotation correction matrix R-1 can be written as example of a shearing effect in the horizontal direction.

R-1 =cos(a) -sin(a)] The shearing may also be associated with the accent of
= [sin(a) cos(a) j (21) a speaker, depending on certain visimes. Then, the similar
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question can be posed whether shearing conveys a linguistic lip image can be written as
information. Y = cTxC (24)

4. Visual Speech Feature Extraction where X is an NxN lip image, Y contains the NxN DCT

Lipreading clearly meets at least two practicable criteria: coefficients, and C is an NxN transform matrix defined as
It mimics human visual perception of speech recognition, (2m +_I)nir
and it contains information that is not always present in Cmr =k cos [ where (25)
the acoustic signal [3,4,14-16]. Petajan is one of the first 2N

researchers who built a lipreading system using oral-cavity
features to improve the performance of an acoustic ASR sys- fV/-1/N when n=-O,
tem [17]. Silsbee et al. [18] utilized vector quantization (VQ) k2 / -IN otherwise
of acoustic and visual data for their HMM based audio and
video subsystems. Teissier et al. [191 utilized 20 FFT based and m, n = 0, N-1. Our goal is to extract visaul features
1-bark wide channels between 0 and 5 Khz for acoustic fea- satisfying step (ii) and step (iii), and most relevant informa-
tures and inner lip horizontal width, inner lip vertical height tion of the lip shape from the NxN DCT coefficients. Let I'
and inner lip area for the visual features. Chiou et al. [20] and I be lip shape images which differ in a scale and shift
utilized active contour modeling to extract visual features of factors (lighting condition). i.e.,
geometric space, the Karhunen-Loeve transform (KLT) to
extract principal components in the color eigenspace, and I = a-a ° + J, (26)
HMMs to recognize the combined video only feature se-
quences. Potamianos et al. [14,211 used Fourier descrip- where at and 6 are scale and shift factors in the acceptable
tor magnitudes for a number of Fourier coefficients, width, range' of the chrominance/luminance space.
height, area, central moments, normalized moments as con- From Equation 25, we know that the zeroth coefficient
tour features, image transform features, and hierarchical of the DCT transform contains the DC information (6 in
discriminant features. Equation 26) which doesn't convey any shape information.

In order to utilize audio-visual ASR for natural speech It is also known that DCT is a linear transform and .the scale
in varying lighting conditions, the visual front end algo- factor a just scales all the DCT coefficients. So normalizing
rithm that extracts the visual features must satisfy the three all the coefficients in the DCT domain by a coefficient Ymn
criteria presented in Section 1. The contour based feature makes the DCT transform scale independent. Then, 35 co-
described in Section 4.1 satisfy step (i) in the Fourier do- efficients from the lower frequencies are selected excluding
main and is relatively independent of step (ii) and step (iii). the DC information. Figure 5 shows the normalized 2D DCT
For pixel based visual feature extraction methods, step (i) is based visual feature extraction process.
explained in Section 3. Steps (ii) and (iii) are explained for
both 2D DCT based visual features and kurtosis measure 0 1 2 N

based visual features which are described in Sections 4.2, 0
and 4.3, respectively. I______

2 1xm o..e.ationector.O

4.1. AI-FDs Based Visual Features Subset of 2D DCT coefficients.
wherc m is the number of (scale

In general, for the video feature extraction, the relationship N and shift ivariant) coefficients.
between observed parametric outer-lip contour data x and NxN DCT Coefficients

parametric reference data x' can be written as, Figure 5: Normalized 2D DCT based visual feature extraction.

x[n] = Ax m[n + -] + b, (23)

where A represents a 2 x 2 arbitrary affine matrix, det(A) # 4.3. 2D Kurtosis Measure of the Probability Density Distri-
0, that may have scaling, rotation, and shearing affect, b bution of the DCT Coefficients
represents a 2 x 1 arbitrary translation vector, and r- is start- After the rotation correction and size normalization of the
ing point. These are removed in the Fourier domain [7,221 lip image, the resulting lip image is divided into 16 x 16

The video feature extraction algorithm extracts twelve sub-blocks with 50% overlapping or non-overlapping sub-
affine-invariant Fourier descriptors (AI-FDs) of the para- blocks, and then the two-dimensional DCT of the each
metric outer lip contour data as well as four affine-invariant block is calculated. For simplicity, let Y be the matrix of
oral cavity features which are width, height, ratio of width 16 x 16 DCT coefficients. Y(0,0) depends only on the chromi-
to height, and outer lip's inner area by normalizing the next nance/luminance space shift shown in Equation 26, and con-
frame's corresponding oral cavity features. Dynamic co- veys no shape information. Thus, the Y(0, 0) coefficient is
efficients, which are used as a video observation features, removed. The remaining coefficients are now only chromi-
are obtained by differencing the consecutive image sequence nance space scale dependent (see Equation 26). We remove
features. the dependency on the chrominance space scale by calculat-

ing the 2D kurtosis of the frequency profile (probability dis-
4.2. Normalized 2D DCT Based VisualFeatures tribution of DCT coefficients) of each block in the lip image
The Discrete Cosine Transform is one of the many trans- discussed in the following sections. Figure 6 shows the pixel
form methods that transforms its input into a linear combi- 'Reference and observed lip image contents are clearly visible for a
nation of weighted basis functions. The 2D DCT on a NxN range of a and .

45



I • I I 1 0 1 •i
k. -k , "k " k, T ý k," -

I I - (a) N (C)

Figure 6: Illustration of FPM visual feature extraction (ki is an Figure 7: In search of the lip region type with 96x64 pixel size
appearance based visual coefficient for the ith lip image block), to extract visual speech features: a) exact lip region, b) exact

rectangular lip region, c) extended rectangular lip region.

based visual front end process, where ko, ki,.. ., k1j are co-
efficients for the pixel (appearance) based visual features of r be the mean vector and covariance matrix of W, respec-
the lip image. In this work, we will refer these pixel based tively. Mardia [25] proposed the p-dimensional multivariate
features as frequency profile measures (FPMs), which are kurtosis as:
2D kurtosis measures of the probability density distribution
of the DCT coefficients. 0 2j, = E[(W -a)TF- (W-)] 2  (32)

In the theory of probability, the classical measure of the
non-Gaussianity of a random variable is the kurtosis mea- where T denotes the transpose of a vector. Zhang 123] used

sure. Kurtosis measures the departure of a probability dis- 2D kurtosis of random vectors for a sharpness measure of
tribution from the Gaussian (normal) shape2. Kurtosis is Scanning Electron Microscopy (SEM) images. The 2D kur-
dimensionless ratio, and greater than zero for most non- tosis /32,2 is calculated by

Gaussian random variables 3. Specifically, for a given 2D im-
age block function I(n, m), where m, n = 0, 1. N, the /32,2 = [Y4 ,o+yo,4 +2 12 ,2 +4p(p 72 ,2- 7 1, 3-t 3 ,I)I/(1-p 2 )2 ,

corresponding 2D DCT coefficients Y(x, y) can be obtained (33)

as described in Section 4.2, where x and y are the spatial where

frequencies in the DCT domain. The high-frequency DCT = _ U - (_ - -_/2)2

coefficients 4 are discarded to minimize the video noise effect jxk,t ) =y[-'j(

which is discussed in Section 4.3.1. The rest of the lower fre- X 5/

quency DCT coefficients Y(x, y) for x, y = 1, 2,... N/2, are p(X))k/ 2(-(x -_ Ps)
2p(X))1/2]. (34)

normalized to form the bi-variate probability density func-
tion p(x, y). Using the notation of [231, for a given univariate

22random variable x with marginal probability mass function Y = E[(x - =x)(y py)], a E[(x - 1 (35)
p(x), mean p,, and existing finite moments up to the fourth and
moment, then, the univariate kurtosis is defined by: 2= a/(a~ a,). (36)

kurt(x)= 32 = M4 (27) The 2D kurtosis measure, /2,2, is dimensionless and scale
) - 2  and shift invariant as seen in Equation 33. In this work,

the 2D kurtosis defined in Equation 33 is calculated using
where m2 and m4 are the second and fourth central mo- the probability density distribution of the DCT coefficients
ments, respectively. In general, the kth central moment is of the image block function I(n, m). We will refer to the
defined by: /32,2 measure as the frequency profile measure (FPM) of an

image block. The image blocks, which have zero marginal
Mk= E[(x - /p)"] = -Z(x - p3 )kp(x), (28) variances of x or y, are discarded for/32,2 calculation, and

X their FPMs are arbitrarily assigned to the 74,o value when
ao. 5 0 and ory = 0, to the 7o,4 value when ory, 0 and

where marginal density function of x is a,, = 0, and to -1 when both aor = 0 and ao, = 0.

p(x) = _,p(x, y), (29) 4.3. 1. Reducing the Effect of Video Noise in FPM Visual Fea-
1 lures

where E denotes the probability expectation [24]. If x, and It is known that the low-frequency coefficients in the DCT

X2 are two independent random variables, then kurtosis has of the video signal contain the large details and the high-

the following linearity properties: frequency coefficients contain the finer details of the im-
age. Video noise5 is clearly represented in the DCT coef-

kurt(xi + X2) = kurt(xi) + kurt(x 2) and (30) ficients and using the full spectrum of the image leads to
noisy (distorted) visual features. That is why some of the

kurt(csxi) = a kurt(xi) (31) high-frequncy DCT coefficients were discarded in the calcu-

lation of FPM of the image blocks described in Section 4.3.
where is a is an arbitrary scalar. Clearly, any scale factor The pixel based visual front end research requires further
in Equation 27 cancels out. Let W be a p-dimensional ran- investigation on how to minimize the effects of video noise
dom vector with finite moments up to the fourth, and y and and the dependence of FPM on the selection of the cut-off

2The smaller the kurtosis. the flatter the top of the distribution. frequency.
3Kurtosis is 3 for any univariate Gausain distribution. 5Motion blur. coding artifacts, quantization errors, electronic noise.4The upper half of the DCT coefficients are discarded. etc., are considered to be video noises.
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5. Visual-Only Experimental Setup and
Results

This paper discusses visual modality speech recognition
(lipreading) system setup and results. The HMM states were

(a) N) (C) modeled with continuous density Gaussians with single mix-
ture components. The aim of this work is to investigate an
affine and lighting conditions invariant visual feature ex-

Figure 8: In search of the lip region type with 80x48 pixel size traction method. Therefore, the HMM model structure was
to extract visual speech features: a) exact lip region, b) exact kept basic. The H1MM implementation was word level, left-
rectangular lip region, c) extended rectangular lip region. to-right with no skip transitions with ten (eight emitting and

two non-emitting) states, and diagonal covariance Gaussian
mixture components since we assume that the coefficients in
the observation vectors are naturally independent. All the
model parameters were initialized using the Viterbi train-
ing algorithm and re-estimated using the Baum-Welch re-
estimation algorithm. Viterbi recognition (dynamic pro-
gramming) algorithm is utilized for the recognition.

The Clemson University Audio-visual Experimental
(CUAVE) connected and continuous audio-visual digit

(a) N) database, which is a thirty six subject dataset, was utilized
for the experiment. The visual-only experimental results
are presented for a connected audio-visual digit recognition

Figure 9: Effect of interpolating on pixel based visual feature task. The following visual features from exact lip region,
extraction: a) re-interpolated from 96x64 pixels to 60x60 pixels, exact rectangular lip region, and generous rectangular lip
b) re-interpolated from 80x48 pixels to 60x60 pixels. region as shown in Figures 8 and 9 are utilized in the visual-

only speech recognition system.

1. Subset of normalized 2D DCT features

2. FPM features

3. AI-FD features

Table 1: Visual-only recognition accuracy for connected digit 4. Concatenated AI-FDs and FPM features
task using the subset of the normalized 2D DCT features, FPM
features, and concatenated AI-FDs and FPM features. (LR: The subset of the 36 speaker dataset, containing 15lip region, R-LR: rectangular LR, ER-LR: extended R-LR, bl.: speakers each is uttering five times 0-9. The speakers are
blocks), _____ split into training (TR) and testing (TS) set of ten and five

Sub. of norm. 2D DCT using TR V% TS V% subjects, respectively, leading to speaker independent visual
only recognition system. The results are shown in Table 1.

exact LR with ini. 80x48 pixels 22.40 21.60
exact LR with ini. 96x64 pixels 23.00 20.80 6. Concluding Remarks and Future Work
R-LR with ini 80x48 pixels 24.60 17.20
R-LR with ini. 96x64 pixels 24.00 19.60 Table 1 shows the visual-only connected digit recognition
ER-LR with ini. 80x48 pixels 22.80 24.40 results, where TR corresponds to training set performance
ER-LR with ini. 96x64 pixels 21.60 21.60 and TS corresponds to test set performance, for various vi-

FPMs using sual features discussed in this paper. The subset of the nor-

exact LRZ with overlapping bI. 41.80 19.60 malized 2D DCT features based on the training set results
exact LIZ wihnnoelpfrom exact rectangular lip region gives better results than

exact LR with non-overlapping b] . 35.00 24.00 the exact lip region and extended lip region (see in Figure
R-LR with overlapping bI. 38.80 23.60 9). Another observation is that slight change in lip image
R-LR with non-overlapping bl. 34.60 22.00 content due to the linear interpolation has effects on the sys-
ER-LR with overlapping bl. 39.00 22.00 tem's performance.
ER-LR with non-overlapping bi. 34.20 19.60 In the results obtained using FPM features, the train-

Concat. AI-FDs and FPMs using ing set performance is much better than the test set per-

only AI-FDs 18.55 21.33 formance. Similar performance behavior was observed for

exact LR with overlapping bl. 19.20 18.40 a speaker dependent recognition task. Therefore, we con-

exact LR with non-overlapping bl. 17.60 18.40 clude that FPM based features are highly video noise sen-

R-LR with overlapping bl. 18.40 20.40 sitive. The overlapping block based FPM features outper-

R-LR with non-overlapping bl. 17.40 18.40 formed the non-overlapping block based FPM features sig-

ER-LR with overlapping bl. 18.40 17.60 nificantly in the training set. Among the three different lip

ER-LR with non-overlapping bl. 17.80 18.80 regions shown in Figure 9, the exact lip region with over-
lapping blocks method outperforms the results of outer two
regions.

In the results obtained using concatenated AI-FDs and
FPMs. the training set and test set performances are close
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to each other and worse than FPMs-only results. Therefore, [9] G. Iyengar, G. Potamianos, C. Neti, T. Faruquie, and
we conclude that each feature should be treated as a sepa- A. Verma, "Robust detection of visual roi for auto-
rate stream and weighted properly to bring the additional matic speechreading," in IEEE Fourth Workshop on
information from one another. Similarly, the slight perfor- Multimedia Signal Processing, 2001, pp. 79-84.
mance increase due to the overlapping block of FPM fea- [10] A. Yuille, "Feature extraction from faces using de-
tures over non-overlapping block based FPM features can formable templates," Int. Journal of Computer Vision,
be noticable. 8(2), pp. 99-111, 1992.

We also report that the number of mixtures in the Gaus- [11] M. Kass, A. Witkin, and D. Terzoplpoulos, "Snakes:
sian mixture model (GMM) selection and teh number of active contour models" in Int. Proc. 1st Int. Conf. on
states in the silence model affects the performance of visual- Computer Vision, 1987, pp. 259-268.
only system. For example, setting GMM to twelve and us-

ing embedded training of the FPM based visual only system [121 E.K. Patterson, S. Gurbuz, Z. Tufekci, and J.N.

achieved 98% recognition accuracy on the training set, but Gowdy, "Moving-talker, speaker-independent feature

about 16% on the speaker independent test set (which is less study and baseline results using the cuave multimodal

than the result of single GMM reported in Table 1. The speech corpus," EURASIP Journal on Applied Signal

similar behavior is observed for the speaker dependent set. Processing (accepted for publication), 2002.

That is, the system is being well trained with the FPM fea- [13] A. K. Jain, Fundamentals of Digital Image Processing,
tures, but the both test sets are behaving like an unmatched Printice-Hall, 1997.
system due to the resulting noisy observations. [14] G. Potamianos, H. P. Graf, and E. Cosatto, "An

We conclude that visual noise is an important factor in image transform approach for hmm-based automatic
visual speech feature extraction, and overlapping local im- lipreading," in Proceedings of ICIP, 1998.
age block based FPM features outperform normalized 2D (151 C. Bregler, H. Hild, S. Manke, and A. Waibel, "Im-
DCT features, AI-FD features, and concatenated A1-FDs proving connected letter recognition by lipreading," in
and FPM features. Future work will include initial lip seg- Proceedings of ICASSP, 1993.
mentation for the Bayesian framework training and further [16] A. Adjoudani and C. Benoit, "On the integration of
study on the noise robust FPM feature extraction. auditory and visual parameters in an hmm-based asr,"

in Speechreading by Humans and Machines: models,
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